

270 SÉRIE -- ALTERNATEURS SYNCHRONES

4 POLE 50/60 Hz - Trois phases

SPÉCIFICATIONS GÉNÉRALES

Jcbenergy, est un producteur d'électricité indépendant et internationalement reconnu, spécialisé exclusivement dans la fabrication d'alternateurs synchrones.

Jobenergy concentre sa mission d'entreprise sur des conceptions originales et faites maison ; des solutions innovantes et assurer un développement à long terme et durable.

Les équipes techniques turques et étrangères travaillent toujours avec leur savoir-faire et leur expérience afin de répondre aux demandes et projets universels et d'avoir une augmentation continue des performances, de la durée de vie totale et de la fiabilité globale des produits. Jebenergy poursuit les études de R&D avec des norme mondiale qui ont une connaissance approfondie de ses produits.

Il a été prouvé que les alternateurs synchrones Jobenergy résistent aux applications environnementales les plus difficiles. Ils se sont avérés être l'une des marques d'alternateurs les plus fiables et préférées au monde avec leur système sans balais et auto-excitant, leur régulateur de tension électronique (AVR), leur forme d'onde stable, leur faible distorsion harmonique et leur rendement élevé.

En cas de demande, Jobenergy peut également réaliser des alternateurs courant continu (DC), des alternateurs basse tension (BT) 50-60 Hz, des alternateurs moyenne tension, des alternateurs haute tension; alternateurs pour tours d'éclairage, alternateurs de soudage, alternateurs de classe IP44 et PI54 pour applications marines, alternateurs à vitesse variable pour projets de télécommunications et grues; alternateurs haute fréquence pour groupes électrogènes au sol, radars, avions et hélicoptères.

Application du produit

Les alternateurs Jobenergy sont principalement utilisés dans l'application des groupes électrogènes diesel, essence et gaz. Ils peuvent également fonctionner avec des turbines à vapeur ou hydrauliques. Ils fonctionnent dans toutes les configurations de groupes électrogènes de secours, centrales électriques ou sources d'alimentation continue.

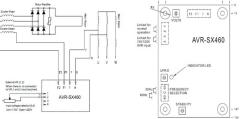
- Complexe industriel et commercial.
- Tours de télécommunication et de téléphonie cellulaire, émetteurs de radio et de télévision
- Industrie de défense et projets militaires.
- Chantiers de construction, exploitation minière, concasseurs de pierres et centrales de malaxage, tours d'éclairage
- Agriculture et irrigation ; élevages de bovins et de poulets
- Hôtels et hôpitaux, lofts, centres de soins, cliniques
- Bureaux, magasins, usines, ateliers, bâtiments, complexes sportifs, magasins, centres commerciaux, banques, stations-service
- Entreprises de location, véhicules de service mobiles, hôpitaux mobiles et autres installations mobiles
- Aéroports, démarrage initial des véhicules aériens, services au sol

Construction

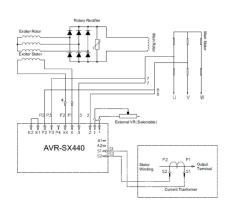
Les alternateurs Jebenergy sont fabriqués selon les exigences de la norme TSE 60034-1; IEC 60034-1. En utilisant les meilleures normes de qualité lors de la fabrication, le résultat est un fonctionnement sûr et une grande durabilité. Les styles de montage normalement fournis sont ; Palier simple avec accouplement par brides et disque flexible. Double roulement avec accouplement par bride.

Bobinage et performances électriques

Tous les enroulements de stators d'alternateurs ont un pas de 2/3. Cela élimine les harmoniques triples (3ème, 9ème, 15ème...) sur la forme d'onde de tension et s'avère être la conception optimale pour une alimentation sans problème des charges non linéaires. La conception à pas 2/3 évite les courants neutres excessifs parfois observés avec des pas d'enroulement plus élevés, lorsqu'ils sont en parallèle avec le secteur. Un enroulement d'amortisseur entièrement connecté réduit les oscillations lors de la mise en parallèle. Cet enroulement, avec un pas de 2/3 et des conceptions de pôles et de dents soigneusement sélectionnées, assure une très faible distorsion de la forme d'onde. Des métaux siliceux de haute qualité sont utilisés dans le corps et augmentent l'efficacité de l'alternateur.


Système d'excitation et régulateurs de tension automatiques (AVR)

Le système de contrôle d'auto-avertissement fournit l'alimentation du stator principal au stator d'avertissement via l'AVR. Les semi-conducteurs à haut rendement de l'AVR (émetteurs à diodes, etc.) permettent d'élever positivement la basse tension permanente. La sortie triphasée du pont de diodes du rotor d'excitation alimente la zone d'excitation du rotor principal. Il y a une varistance qui protège le pont de diodes et agit comme une prise contre les chocs qui peuvent être court-circuités ou similaires.


Avec le système de rapport Fréquence / Tension (U / F), il protège l'AVR et l'alternateur contre les basses fréquences. Il offre une possibilité de réglage de la tension dans les limites de \pm 5 % pour le réglage de la tension externe.

Les régulateurs de tension automatiques (AVR) sont spécialement conçus et adaptés aux opérations de fonctionnement simples et parallèles pour les systèmes auto-excités et à excitation séparée (PMG).

Borne et boîte à bornes

Les générateurs standard sont re connectables en 3 phases avec 12 extrémités amenées aux bornes, qui sont montées sur un couvercle à l'extrémité non motrice du générateur. Une boîte à bornes en tôle d'acier contient l'AVR et offre suffisamment d'espace pour les dispositions de câblage et de presse-étoupe des clients. Il a des panneaux amovibles pour un accès facile.

Isolation / Imprégnation (VPI)

Le système d'isolation est de classe H. Tous les composants du bobinage sont imprégnés d'une résine polyester insaturée de classe de température 200. L'imprégnation offre une rigidité et une protection indispensables contre les environnements difficiles, typiques des applications de générateurs.

Les alternateurs Jobenergy sont livrés avec le système d'isolation Jobenergy. Ce système d'isolation est basé sur le système « Imprégnation sous vide sous pression » (VPI) qui a été développé en coopération avec les fournisseurs de matériaux d'isolation les plus renommés du monde entier. Utilisation d'une résine spéciale à base d'époxy ; ce système d'isolation assure une parfaite isolation des bobinages des alternateurs et n'émet pas de gaz nocifs dans l'environnement.

Équilibrage dynamique

Les parties tournantes (rotor principal, rotor excitateur, groupe de diodes, ventilateur) sont équilibrées dynamiquement avec une précision supérieure à celle exigée par la norme TSE EN IEC 60034-14 et ISO2372, garantissant des niveaux minimaux de balourd résiduel.

Formes d'onde / Interférences radio

Les alternateurs sont conçus pour donner une excellente forme d'onde de sortie. Le contenu harmonique total de la forme d'onde de tension de ligne à vide est inférieur à 5 %, conformément aux limites spécifiées par les normes TSE/IEC. La valeur TIF est <50 et la valeur THF est <2%.

Évaluations transitoires

La chute de tension transitoire due à l'application de la pleine charge à un facteur de puissance de 0,8 est inférieure à 18 %, la tension de sortie se rétablit à moins de 3 % de la valeur nominale en moins de 0,3 seconde.

Service continu / S1 – Température ambiante / 40°C

L'alternateur fonctionne à puissance nominale pendant une durée illimitée avec possibilité de surcharge jusqu'à 10% pendant 1 heure toutes les 12 heures, sans endommager son système d'isolation. Le S1, également appelé service continu ou principal, est appliqué principalement lorsqu'il n'y a pas d'autre source d'alimentation disponible, telle que ; groupes pour les groupes de location pour l'irrigation, la réfrigération et l'application pour les heures de pointe. Pour un service continu, il est accepté une élévation de température dans les enroulements jusqu'à 125°C.

Service de veille - Température ambiante / 40°C

Le groupe électrogène fonctionne comme énergie de secours avec des charges variables dans des situations d'urgence dans des endroits alimentés par le réseau / la compagnie d'électricité ou une autre source d'alimentation principale. Dans ce type de service, la machine n'accepte pas les surcharges et fonctionne avec des charges variables jusqu'à la puissance nominale du service de veille (40°C). Une augmentation de la température de l'enroulement jusqu'à 150°C est acceptée (conformément à la norme TSE 60034 / IEC 60034), mais si cela se produit, la durée de vie utile de l'alternateur est réduite de 2 à 6 fois. L'utilisation de l'alternateur en service d'astreinte est limitée à 500 heures par an.

Des conditions de fonctionnement

Lors du choix d'un alternateur, « ALTITUDE », « TEMPÉRATURE AMBIANTE » et « FACTEUR DE PUISSANCE » doivent être pris en considération. Les chutes de puissance doivent être calculées à l'aide du tableau ci-dessous et la détermination de la puissance doit être effectuée en conséquence.

Altitude

La puissance nominale se réfère aux installations jusqu'à 1000 mètres au-dessus du niveau de la mer. Pour les applications au-dessus de cette altitude, le facteur de correction de puissance suivant doit être appliqué

Altitude (m)	<1000	<1500	<2000	<2500	<3000
Facteur K	1	0.96	0.93	0.90	0.86

Température ambiante

Les puissances nominales se réfèrent à une installation avec une température ambiante de 40°C. Pour les applications différentes de 40°C, le facteur de correction de puissance suivant doit être appliqué.

Température ambiante	30°C	35°C	40°C	45°C	50°C	55°C
Facteur K	1.04	1.02	1	0.96	0.93	0.90

Facteur de puissance (Cos Q)

Le facteur de puissance nominal est de 0,8 inductif. Pour une application avec une valeur de facteur de puissance différente de 0,8, le facteur de correction suivant doit être appliqué.

Classe d'isolation thermique

La classe d'isolation régit la température maximale admissible qu'un alternateur peut faire fonctionner sans endommager le système d'isolation.

Facteur de puissance					
(Cos Q)	0.80	0.70	0.60	0.30	0
Facteur K	1	0.93	0.88	0.82	0.80

Classe d'isolation	Maximum Permissible Temperature
F	155 ºC
Н	180 ºC

Hausse de température

L'élévation de température est l'augmentation de la température au-dessus de la température ambiante 40°C.

Hausse de température	Température C°	L fe
В	80 ºC	de
F	105 ºC	
н	125 ºC	

L'application de secours permet aux enroulements de fonctionner plus chauds que la limite d'échauffement de classe H, donc pour une température ambiante de ;

Augmentation de la température de 40°C: 150°C

27°C Hausse de température : 163°C

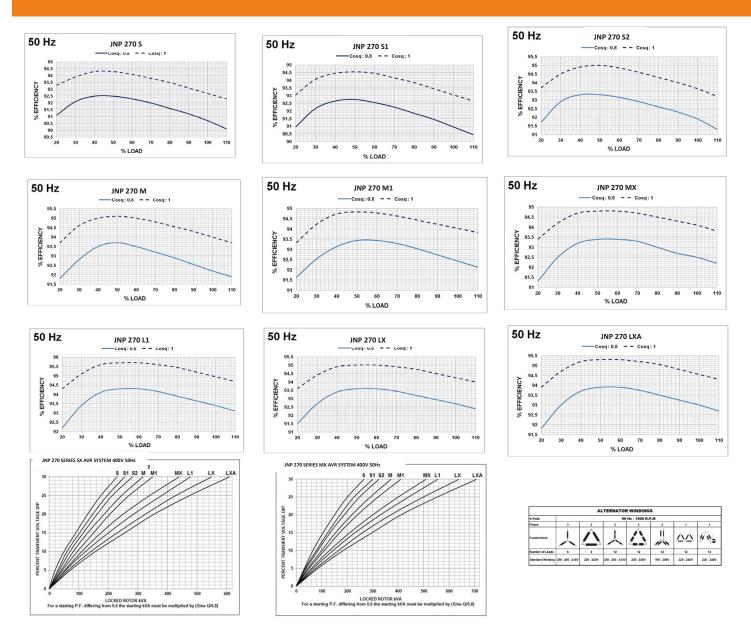
Valeurs nominales du groupe électrogène

4 POLE 1500 RPM 50Hz

Classement du groupe électrogène	Alimentation de secours d'urgence (ESP)	Alimentation principale à durée limitée (LTP)	Alimentation nominale principale (PRP)	Alimentation de fonctionnement continue (COP)
	Variable	Constant	Variable	Constant
Type de charge	200	500	Unlimited	Unlimited
Heures d'exploitation annuelles	70%	100%	70%	100%
Charge moyenne	No	No	10% 1 heure dans chaque 12	No
Surcharge	Standby	Standby	Continuos	Continuos
Classement de l'alternateur	S10	S10	S1	S1
Cycle de service	Standby 150/40°C	Standby 150/40°C	Class H 125/40°	Class H 125/40°
	Standby 163/27°C	Standby 163/27°C	Class H 105/40°	Class H 105/40°

Données techniques de l'alternateur - 50Hz

Données typiques


Classe d'isolation	Н	Système de contrôle	Auto-excité
Pas d'enroulement	2/3 - (N° 6)	A.V.R. Modèle	Standard SX460/SX440
Fils	12	Régulation de tension	± 1.0 %
Preuve d'égouttement	IP 23	Courant de court-circuit soutenu	300% (3 IN) : 10s
Altitude	≤ 1000 m	Harmonique totale (*) TGH / THC	< 4 %
Survitesse	2250 min-1	Vague De : NEMA = TIF - (*)	< 50
Flux d'air	0.514 m³/sec	Vague de : I.E.C. = THF - (*)	< 2 %
Entraînement de roulement	-	Roulement non-Drive	6310 - 2RZ

		50 Hz kVA	/kW- Facteui	r de puissance	e (CosQ) = 0,8		
Service Ambiance C°			Continuous / 40 ° (•	·	Standby / 27 °C	
Montée en classe / C°			H / 125°K			H / 163° K	
Étoile de la série (V)		380/220	400/231	415/240	380/220	400/231	415/240
Étoile parallèle (V)		190/110	200/115	208/120	190/110	200/115	208/120
Série Delta(V)		220	230	240	220	230	240
JNP 270S	kVA	123	123	125	135	135	138
	kW	98	98	100	108	108	110
JNP 270S1	kVA	141	141	144	155	155	147
	kW	113	113	115	124	124	118
JNP 270S2	kVA	159	159	162	175	175	178
	kW	127	127	130	140	140	142
JNP 270M	kVA	182	182	186	200	200	205
	kW	146	146	149	160	160	164
JNP 270M1	kVA	214	214	218	235	235	240
	kW	171	171	174	188	188	192
JNP 270MX	kVA	232	232	237	255	255	261
	kW	186	186	190	204	204	209
JNP 270L1	kVA	255	255	260	280	280	286
	kW	204	204	208	224	224	229
JNP 270LX	kVA	273	273	278	300	300	306
	kW	218	218	222	240	240	245
JNP 270LXA	kVA	318	318	324	350	350	356
	kW	254	254	259	280	280	285

RÉACTANCES (%) – CONSTANTES DE TEMPS (ms) : CLASSE : H / 400 V											
TENSION SERIE STAR	400 V	270\$	27051	270S2	270M	270M1	270MX	270L1	270LX	270LXA	
DIR. AXE SYNCHRONE	Xd	2,21	2,06	2,09	2,11	2,01	2,01	2,009	1,92	1,915	
DIR. AXE TRANSITOIRE	X'd	0,18	0,18	0,185	0,19	0,175	0,174	0,17	0,17	0,168	
DIR. AXE SUBTRANSITANT	X''d	0,13	0,11	0,12	0,13	0,12	0,12	0,12	0,12	0,118	
QUAD. RÉACTANCE DE L'AXE	Xq	1,43	1,32	1,35	1,38	1,23	1,21	1,18	1,15	1,14	
QUAD. AXE SUBTRANSITANT	X''q	0,16	0,16	0,16	0,16	0,14	0,145	0,15	0,16	0,155	
RÉACTANCE DE FUITE	XL	0,06	0,06	0,07	0,08	0,08	0,083	0,078	0,07	0,06	
SÉQUENCE NÉGATIVE	X2	0,14	0,13	0,135	0,14	0,12	0,125	0,123	0,12	0,14	
SÉQUENCE ZÉRO	XO	0,09	0,08	0,085	0,09	0,08	0,08	0,075	0,07	0,1	

AUTRES DONNÉES – CLASSE H / 400 V										
TENSION SERIE STAR	270S	270S1	27052	270M	270M1	270MX	270L1	270LX	270LXA	
T'd TRANSIENT TIME CONST.	0.028s	0.031s	0,0315s	0.032s	0.034s	0,035s	0,038s	0,038s	0,03s	
T"d SUB-TRANSTIME CONST.	0.001s	0.01s	0.01s	0.01s	0.011s	0.011s	0,012s	0,012s	0,085s	
T'do O.C. FIELD TIME CONST	0.85s	0.85 s	0.85s	0,85s	0.88s	0,9s	0,95s	1 s	1s	
Ta ARMATURE TIME CONST.	0.007s	0.073s	0.072s	0.007s	0.085s	0,009s	0,01s	0,01s	0,01s	
SHORT CIRCUIT RATIO	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	

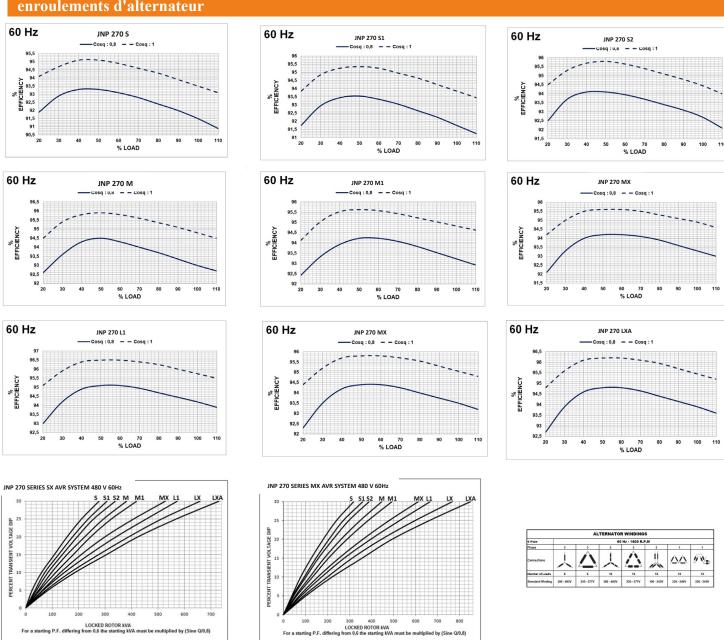
Courbes d'efficacité triphasées / 400 V / 50 Hz et pourcentage de chute de tension transitoire et enroulements d'alternateur

Des fils 100% cuivre de haute qualité sont utilisés dans les rotors, les stators et les câblages d'excitation des alternateurs JCBENERGY. Toutes les tôles utilisées dans la production sont des métaux siliceux. Par conséquent, les alternateurs JNP ont un rendement plus élevé par rapport aux produits exemplaires.

Données techniques de l'alternateur - 60Hz

4 POLE 1800 RPM 60 Hz

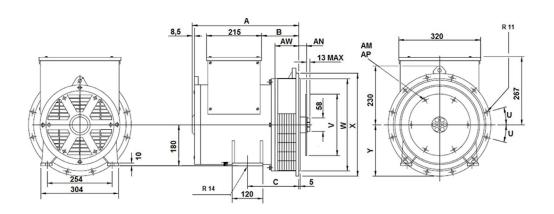
Données typiques			
Classe d'isolation	Н	Système de contrôle	Auto-excité
Pas d'enroulement	2/3 - (N° 6)	A.V.R. modèle	Standard SX460/SX440
Fils	12	Régulation de tension	± 1.0 %
Preuve d'égouttement	IP 23	Courant de court-circuit permanent	300% (3 IN) : 10s
Altitude	≤ 1000 m	Harmonique totale (*) TGH / THC	< 5 %
Survitesse	2250 min-1	Forme d'onde : NEMA = TIF - (*)	< 50
Flux d'air	0.617 m³/sec.	Forme d'onde : I.E.C. = THF - (*)	< 2 %
Entraînement de roulement	-	Roulement sans entraînement	6310 - 2R7


^(*) Contenu harmonique total ligne à ligne, à vide ou à pleine charge nominale linéaire et équilibrée

		60 Hz	kVA / kW - Fact	eur de puissa	nce (CosQ) = 0,8		
Service Ambiance (20	1	Continuous / 40°	С		Standby / 27 °C	
Montée en classe /	C°		H / 125 ° K			H / 163° K	
Étoile de la série (V)	416/240	440/254	480/277	416/240	440/254	480/277
Étoile parallèle (V)		208/120	220/127	240/138	208/120	220/127	240/138
Série Delta(V)		240	254	277	240	254	277
JNP 270S	kVA	139	146	154	153	161	169
	kW	111	117	123	122	129	135
JNP 270S1	kVA	164	172	181	180	189	199
	kW	131	138	145	144	151	159
JNP 270S2	kVA	184	194	204	202	213	224
5111 27 552	kW	147	155	163	162	170	179
JNP 270M	kVA	210	221	233	231	243	256
	kW	168	177	186	185	194	205
JNP 270M1	kVA	249	262	275	274	288	303
	kW	199	210	220	219	230	242
JNP 270MX	kVA	269	284	298	296	312	328
	kW	215	227	238	237	250	262
JNP 270L1	kVA	294	309	325	323	340	358
	kW	235	247	260	258	272	286
JNP 270LX	kVA	321	338	356	353	372	392
	kW	257	270	285	282	298	314
JNP 270LXA	kVA	358	377	398	394	415	437
	kW	286	302	318	315	332	350

RÉACTANCES (%) – CONSTANTES DE TEMPS (ms) : CLASSE : H / 480 V										
TENSION SERIE STAR	480 V	270S	270S1	270S2	270M	270M1	270MX	270L1	270LX	270LXA
DIR. AXE SYNCHRONE	Xd	2,3205	2,163	2,1945	2,2155	2,1105	2,1105	2,10945	2,016	2,01075
DIR. AXE TRANSITOIRE	X'd	0,189	0,189	0,19425	0,1995	0,18375	0,1827	0,1785	0,1785	0,1764
DIR. AXE SUBTRANSITANT	X''d	0,1365	0,1155	0,126	0,1365	0,126	0,126	0,126	0,126	0,1239
QUAD. RÉACTANCE DE L'AXE	Χq	1,5015	1,386	1,4175	1,449	1,2915	1,2705	1,239	1,2075	1,197
QUAD. AXE SUBTRANSITANT	X''q	0,168	0,168	0,168	0,168	0,147	0,15225	0,1575	0,168	0,16275
RÉACTANCE DE FUITE	XL	0,063	0,063	0,0735	0,084	0,084	0,08715	0,0819	0,0735	0,063
SÉQUENCE NÉGATIVE	X2	0,147	0,1365	0,14175	0,147	0,126	0,13125	0,12915	0,126	0,147
SÉQUENCE ZÉRO	X0	0,0945	0,084	0,08925	0,0945	0,084	0,084	0,07875	0,0735	0,105

AUTRES DONNÉES – CLASSE H / 480 V										
TENSION SERIE STAR	270 S	270 S1	270 S2	270 M	270 M1	270 MX	270 L1	270 LX	270 LXA	
T'd TRANSIENT TIME CONST.	0,028 s	0,031 s	0,0315 s	0,032 s	0,034 s	0,035 s	0,038 s	0,038 s	0,03 s	
T"d SUB-TRANSTIME CONST.	0,001 s	0,01 s	0,01 s	0,01 s	0,011 s	0,011 s	0,012 s	0,012 s	0,0085	
T'do O.C. FIELD TIME CONST	0,85 s	0,85 s	0,85 s	0,85 s	0,88 s	0,9 s	0,95 s	1 s	1 s	
Ta ARMATURE TIME CONST.	0,007	0,0073 s	0,0072 s	0,007 s	0,0085 s	0,009 s	0,01 s	0,01 s	0.01 s	
SHORT CIRCUIT RATIO	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	1/Xd	


Courbes d'efficacité triphasées / 480 V / 60 Hz et pourcentage de chute de tension transitoire et enroulements d'alternateur

Des fils 100% cuivre de haute qualité sont utilisés dans les rotors, les stators et les câblages d'excitation des alternateurs JCBENERGY. Toutes les tôles utilisées dans la production sont des métaux siliceux. Par conséquent, les alternateurs JNP ont un rendement plus élevé par rapport aux produits exemplaires.

DIMENSIONS

Type de connexion	Taille Disque d'accouplement								
SAE	MODEL	Α	В	SAE	AN	AM	AP	AR	V
4	180 M-MX	433,5	157	7,5	30,16	8	8.7	222,2	241,2
7	180 LA-LXA	523,5	247	7,5					
3	180 M-MX	433,5	147	11,5	39,68	8	11	333,4	352,3
	180 LA-LXA	523,5	237	11,5					
Flange Adapter									
SAE	AW	R	S	Т	U	W	X	С	Υ
4	95	12	11	381	15	361,9	402	203	201
3	105		11	428,6		409,5	451	213	225,5

Produits Spéciaux / Non - Standardisés

Alternateurs de tour d'éclairage Alternateurs à courant continu - (DC)

Alternateurs de soudage Alternateurs Moyenne Tension - (MT)

Alternateurs haute fréquence Alternateurs Haute Tension - (HT)

Alternateurs à vitesse variable Alternateurs de classe IP44 et IP54 - (Marine)

